
International Journal of Theoretical Physics, Vol. 20, No. 2, 1981 

Spinors, Algebraic Geometry, and the 
Classification of Second-Order Symmetric 

Tensors in General Relativity. 

W. J. Cormack and G. S. Hail. 

Department of Mathematics, The University of Aberdeen, The Edward Wright Building, 
Dunbar Street, Aberdeen A B9 2TY, Scotland 

Received June 18, 1980 

Two approaches to the problem of classifying second-order symmetric tensors 
in space-time given by Ludwig and Scanlon and by Penrose 'are discussed. 
Ludwig and Scanlon use both spinor and tensor algebra in their approach, 
whereas Penrose uses spinors and the properties of certain curves in complex 
projective 3-space. These approaches yield essentially identical classifications, 
and this paper points out the connections between them in detail and tabulates 
the results. 

1. I N T R O D U C T I O N  

Several authors have discussed the classification of second-order sym- 
metric tensors in general relativity [Plebafiski, 1964; Ludwig and Scanlon, 
1971; Collinson and Shaw, 1972; Penrose, 1972; Hall, 1976 (for a review 
see Hall, 1979); Cormack and Hall, 1979a, 1979b; Shaw, 1971; Sobczyk, 
1980]. Two of these approaches, namely, those of Ludwig and Scanlon and 
of Penrose, give particularly detailed versions of the classification. It  turns 
out that these two approaches are, apart  f rom a few details (which will be 
considered), essentially the same and it is the purpose of the present paper  
to point out the similarities in detail, especially as one of the papers, that of 
Penrose, is written in the language of algebraic geometry, a language not 
always entirely familiar to relativists. 

The remainder of this section will be devoted to general points of 
notation and a brief discussion of the spinor approach to the classification 
problem which will be useful later in the paper. In Sections 2 and 3 the 
work of Ludwig and Scanlon and  of Penrose wi l lbe  reviewed. In Section 4 
the connections between these approaches will be given and  the results 
tabulated. 
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106 Comack and Hall 

Throughout the paper  the problem of classifying the Ricci tensor in a 
space-time M will be considered, although the same methods apply equally 
well to any symmetric second-order tensor in a Lorentzian manifold taken 
here to have signature + 2. The notation will be the same as that used in 
the papers by Hall (1976, 1979) and Cormack and Hall (1979a, 1979b). 
Without loss in generality, attention will be focused on the trace-free Ricci 
tensor since as far as the present discussion is concerned, it possesses the 
same algebraic structure as the Ricci tensor. If p E M ,  Tp(M) denotes the 
tangent space to M at p and using component  no ta t ion  in some chart 
about  p, the Ricci tensor R~b, its trace-free part  R~b, the Riemann, Weyl, 
and metric tensors and the Ricci scalar are connected in the usual notation 
by the relations 

Rabc d . . ~  Cabc d I + Eabca + gRga[cgd]b 

Eabca = Ra[cgd] b + Rbtdgcla 

B C 

Rab - R a c  b , 

*Eabcd ~ -  * E~bcd, 

E~cb - -  R ab,  

Rab ~" Rab -- 1 z Rgab , 

EJbcd = --E~cdab 

=0 

(a) 

(b) 

R=.Rabg ab (c) (1.1) 

(d) 

(e) 

The tensor Eabcd is completely equivalent to the trace-free Ricci tensor 
and has the algebraic symmetries of the Riemann tensor. I t  has been used 
as the basis of a classification of the Ricci tensor (Cormack and Hall, 

+ 

1979a). The tensors Rab and Eabcd (=Eabcd +iE~a*bca) have spinor equiva- 

lents (in the usual notation 1) /~a/,<--->2~.4B.(.~ and L~,~bcd<--->2eABeI.ZepCZ~W.r 
where ~.4nx~ has the symmetry and Hermitian properties 

'PtAnlxi" ='PABtkiq =0, ~.~Bki" =#'.fi'A~ (1.2) 

If one is interested in a classification of the spinor ~ABX~, then an 
obvious approach is to consider the existence of symmetric eigen 2-spinors 
~AB satisfying the eigenvalue problem 

4"4Bq~AB.~ i- = ~ X / .  ( ~ E C )  (1.3) 

IFor the spinor notation see Pirani (1965), except that here the signature is +2 and not -2.  
This is of nuisance value in the spinor formalism but allows easier comparison with results in 
vector notation. Capital Latin letters take the values 1 and 2 and can is the alternating 
symbol in two dimensions. 
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the classification then being given by the number of independent solutions 
of (1.3) and their type (null or nonnull). By recalling that the tensor 
equivalent of a symmetric 2-spinor is a complex self-dual bivector ffab(<--~ 
2eki@As) equation (1.3) is seen to be equivalent to the eigenvalue problem 

~abcaff Cd=4 ~ ~b (1.4) 

This eigenvalue problem has been dealt with (Cormack and Hall, 1979a) 
and shown to yield a straightforward classification of the trace-free Ricci 
tensor. The representation of /~ab using the fourth-order tensor ~aOcd 
enables many parallels with the Petrov classification of the Weyl tensor to 
be drawn. 

An alternative approach is to consider the eigenvalue problem 

~As~X "~ =/*XAx (/, ~ R) (1.5) 

where Xax is a Hermitian spinor. This is of course equivalent to the 
standard eigenvalue p rob lem/~bk  b = -2 / ,k~,  where k ~ is a real vector. In 
fact if one considers the simplified problem of finding decomposable (null) 
solutions X ~  = a a S x  of (1.5), where a a is a 1-spinor, one is led to a 
straightforward classification o f / ~ b  according to its null eigenvectors (cf. 
Hall, 1976). The relationship between the coefficients in the various 
canomcal forms for Rab, R~b, Eabcd, and ~asa?i is given m the Appendix. 

This section will be closed by listing that, which is the equivalent for 
L~bcd and e~aBxi, of the Bel criteria for the Weyl tensor and its spinor 
equivalent given by Bel (1962) and Penrose (1960). The proofs are easily 
gathered from the canonical forms listed in the append'.~ (cf. Cormack and 
Hall, 1979a), and in the statements it is assumed that/~bcd and @As~i are 
nonzero. 

(i) There exists lE  T~(M), with l nonzero such that la~abcd = 0~:*there 
exists a nonzero 1-spinor a at p such that aaq)Asx~ = O. 

+ 

(ii) There exists l ~  Tp(M) and a nonzero self-dual null bivector F at 
+ 

p such that laE~b~d=lb~dr erasts a 1-spinor a at p such that 

aAq~As2~ v~O and aAaSq~ASiCi~ = aaffxoAs~f i. =0. 
.Off) �9 "" There exists l~Tp(M) with l nonzero and null such that 

l~l~E~e=hlbld(X EN)<=~there exists a nonzero 1-spinor a a t ,  such that 

aAfffCq~As2i~ = Oasff;~(O E N), or equivalently, aAas~Asx ~ = oa2a~(o ~ C). 
+(iv) There exists l~Tp(M) with l nonzero and null such that 

lt~E~]bctdlf]lbF--O~=>there exists a nonzero 1-spinor a at p such that 
~ABff~,-aAaB~X~ Y = O, 

In (i) the vector 1 and the spinor a are unique up to a real and a 
complex factor, respectively, and l is necessarily null being the vector 
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equivalent of the spinor aA~/;. The statement in (i) is equivalent to the 
Ricci tensor having Segr6 type ((2, 1, 1)} with l generating the (unique) null 
Ricci eigendirection. In (ii) one again has that l and a are unique up their 
respective multiplicative factors and that l is necessarily null being the 
vector equivalent of %ff~?. Also l generates the (unique) principal null 

+ 

direction of 1:,,, b. The statement in (ii) is equivalent to the Ricci tensor 
having Segr6 type {(3, 1)} with l generating the (unique) null Ricci eigen- 
direction. The statement in (iii) is equivalent to l generating a null Ricci 
eigendirection and this direction is not necessarily unique. The statement 
(iv) is equivalent to the statement that l is nonzero, null, an d  satisfies 
Rablal b= O. Again l is not necessarily unique. 

2. T H E  L U D W I G - S C A N L O N  CLASSIFICATION 

The approach of Ludwig and Scanlon is based on the fact that the 
components of the trace-free Ricci tensor at p E M can always be written in 
the form (Ludwig and Scanlon, 1971) 

2 Rab = r(aSt,) + r(as-b) 

where r and s are complex vectors 
according to the following scheme. 

-- l(rcSC -I-rcSC)gab (2.1) 

at p. They then classify /~b (4=0) 

Type A. This occurs when r and s are real and proportional and gives 
two immediate subtypes according to the sign of the factor of proportional- 
ity. 

Type B. This occurs when r and s are real but  not proportional. 
Type C. This occurs when r and s are complex vectors (not complex 

multiples of real vectors) where r is nonnuU and where s = ___ ~. Again two 
subtypes occur according to the sign in the last equation. 

Type D. This type comprises all the cases not covered in A, B or C. 
For  the first three of the above types one may write the trace-free 

Ricci tensor as 

1 c A-+: Rab~++_(rarb--~rcrgab) (i) 

1 c ( i i )  B: Rab =r(asb)--Zrcs gab 

1 - C  
c + _ :  = (iii) 

(2.2) 

In (2.2) (i) r is a real vector and is determined up to sign by a type-A 
trace-free Ricci tensor. Similarly, in (2.2) (ii), r and s are real and not 
parallel and determined up to the changes r---~rr, s--*x- is (r E R) and r---~s, 
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Table I. a A Detailed Comparison of the Ludwig-Scanlon, Segr6, and Penrose Types 

Ludwig-Scanlon Sign of relevant invariant 

type r~r" s~s ~ r~s a I 

Segr~ Penrose 
type type 

AI+ - + 

A2+ - 
A3+ - 0 
Bla 0 0 - -  + 

B~j, 0 0 + + 

B2a + O 0 0 

B2b + 0 -- + 
B2c + O + + 
B'3. § + 0 - 

B3b + + - _ 

B 3 c  + + + - -  

B 3 d  + + -- 0 
B3e + + + 0 

B3I + + - + 
B3g + + + + 
B4~ 0 - - + 

B4b 0 - -  "1" + 

B5a - -- -- + 

Bsb -- _ + + 
B6a + - -  0 + 

B6b + - -  _ + 

B6c + -- + + 
Cl • + 
G . _  o 

c3• 

DI ( 04otherwise~Ol, 02,03 ) 

l)2 

I ~ ~~ ~03 1 
o3 ~o~ ~o2,03, ol~>0~ 

[ol ~o2,03, ol~<0j 
04 

{(1,1, l)l } C2,r ~176 
{1(1,1,1)} C 2 
((2,1,1)} X2q 

{(l, 1Xl, 1)} XXii 
{(1, IXI, 1)} XXii 

((3,1)} Gxt 
(2(1,1)} Gxi 
(2(1, 1)} ClXi 
{(1,1)1,1 } ClC1rm 
{(1, 1)1, I } CtClnn 
{(1,1)1,1 } C1Cinn 

((2,1)1} CICff 

{(2,1)1 } C1Cl'r 
{1,1(1,1)} ClC 1 
(1, l(1, 1)} ClC 1 
(2(1, 1)} CXi 
(2(1, 1)} CXi 
{l,l(1,1)} CC 
(1, 1(1, 1)} CC 
{z, ,~(1,1)) CiC 

{g, Z(I, 1)} CiC 

{z, ~(1,1)} ClC 
{l,l(1,1)} B 
{(2,1)1} B~ 
{(l,1)l,l} Bii 

(1,1,1,1} ( ~ 2 )  

{z,~, l , l} Ql 

( Q l n  1 
(2,1,1} ~ Q,i  ~ 

t ~  i J 
(3,1} Q :  

~ first five columns for types A, B, and C and the first and third columns for type 
D give the Ludwig-Scanlon classification. Here, Iffi(rasa)2--(raraXsbsb ) and is 
positive, negative, or zero according as the 2-space spanned by r and s is timelike, 
spacelike, or null. The eigenvalues occurring in the typeD case refer to equations 
(4.1) and (4.3). The sixth column (third column for type D) gives the Segr6 type, 
where the convention that all degeneracies are included inside parentheses and that 
in the diagonal case, the first digit corresponds to the timelike eigenvalue, is adopted. 
The final column gives the Penrose type. 
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s ~ r .  Again in (2.2) (iii) r is complex (but not a complex multiple of a real 
vector), non.null and unique up to the changes r--~ei~ (0ER)  and r--->~, 
?---~r. It is easily shown that the classes A, B, C, and D are exhaustive of 
nonzero trace-free Ricci tensors and disjoint, the nonnull condition on r in 
type C being necessary to keep the types B and C disjoint. 

Ludwig and Scanlon subdivide the class A according to whether the 
vector r in (2.2) (i) is spacelike, timelike, or null. The class B is subdivided 
according to the signs or zeros of rat a, sas a, and ra sa and the nature of the 
2-space spanned by r and s (timelike, spacelike, or null). The class C is 
subdivided according to the nature of the 2-space spanned by the real and 
imaginary parts of r. This subclassification is of course independent of the 
form chosen for Rab within the above-mentioned ambiguities (except of 
course that in class B, ra ra a n d  s~s ~ are interchanged if r and s are). The 
class D is subclassified according to Segr6 type. The classification scheme 
is given in full in Table I. 

3. THE PENROSE CLASSIFICATION 

One recalls the elegant spinor version of the Petrov classification given 
by Penrose (1960) (see also Pirani, 1965). Here, the relevant spinor is the 
completely symmetric four-index spinor equivalent of the complex self-dual 
Weyl tensor, ffASCD" This spinor may be looked upon as determining a 
quartic equation ~ASCDli;a~SI~CI~ D = 0 on the complex projective line PI(C), 
where the components of the 1-spinor ~a are regarded as the homogeneous 
coordinates of a point in PI(C). The fundamental theorem of algebra then 
guarantees four solutions (properly counted) of this equation, the five 
distinct modes of coincidence of which give the five Petrov types, whilst 
the actual solutions give the associated Debever-Penrose directions. 

The spinor equivalent of the trace-free Ricci tensor also has four 
indices, but now two indices are undotted and two dotted and so the above 
approach must be modified if it is to be applied here. Penrose (1972) has 
shown how to carry out such a modification. The spinor ~As~?~ determines 
the quartic equation 

Y = 0 (3.1) 

the solutions of which determine certain points in PI(C)• where 

again the spinor components ~A and ~x are regarded as homogeneous 
coordinates in the two copies of PI(C). Equation (3.1) may be viewed 

geometrically as follows: the 2-spinor ~A~x and its complex multiples 
determine a complex null direction. Hence it follows that (3.1) is equiva- 
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lent to the two equations 

RabXaX b =0, gabxax b =0  (Rab =~0) (3.2) 

where x is the complex (null) vector equivalent of ~,4~k. The equations in 
(3.2) determine two quadric surfaces in complex projective 3-space p3(C),2 
where the components x a are homogeneous coordinates of a point in 
p3(C). Since the metric tensor is nondegenerate, the second quadric in 
(3.2) is proper and so one can choose coordinates X, Y, Z, T in P3(C) such 
that this quadric has equation X T =  YZ. In this coordinate system, if 
x~<-~A ~ k then (x 1, x 2, x 3, x4)-- (~1~ i, ~1~�89 ~2~i, ~2~2). Now the totality of 
complex null directions correspond in a one-to-one fashion to the totality 
of points on the second quadric in (3.2) (which shall be denoted by @), the 

two 1-spinors ~A and ~x which are determined by a complex null direction 
up to a complex factor determining the point in ~ [~PI(C)• The 
real null directions determine a section ~ of ~ given by those points on 

for which the corresponding spinors ~A and gx may be chosen to satisfy 

~ =g,i. This section is homeomorphic to P~(C) and hence to the 2-sphere 
S2- - the  "sphere of vision." Now any proper quadric surface is generated 
by two families (reguli) of lines of p3(C). These lines lie entirely in the 
quadric surface and are the only lines of p3(C) to do so. In the above 
representation, the reguli on the quadric g~ax~x b =0 are the two families 

of lines given, respectively, by ~A = const and ~x = const. No two members 
of the same reguli intersect, but any two members of different reguli 
intersect in a unique point. These reguli play an important r61e in the 
theory. 

Returning now to the quadric surfaces (3.2), their intersection, as is 
well known, is a curve/~ in p3(C) which intersects the "general plane" in 
P3(C) four t imes--a quartic curve. This curve is viewed as a quartic curve 
on ~ and the classification of ~Ba?P then proceeds by an analysis and 
classification of/~. The classification of/~ proceeds in the first instance by 
an examination of the ways in which/~ may decompose into irreducible 
curves of lower order. The possible modes of splitting of a curve defined 
by two quadric surfaces are well known (see for example Semple and 
Kneebone, 1952) and can be stated in terms of the numbers of intersec- 
tions (properly counted) of the various components of/~ with the general 
member of the two systems of generators of @. Being a quartic, /~ will 
intersect the general member of each system of generators twice. Now a 
general curve on ~ which intersects the general member of one family of 

2A discussion of the properties of quadric surfaces can be found in Semple and Kneebone 
(1952). 
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generators p times and the other family of generators q times is called a 
(p, q) curve on ~5. Thus ~t may decompose into certain irreducible parts 
with the proviso of course that the sum of the first integers and the sum of 
the second integers in the pairs ( p , q )  for the various members of the 
decomposition are each equal to 2. The types of irreducible curve one finds 
in such a decomposition are (2,2), (1,2), (2, 1), (1, 1), (1,0), and (0, 1). The 
first is the irreducible quartic, the second and third are twisted cubics, the 
fourth is a (plane) conic [being the intersection of the quadric and a plane 
in p3(C)] and the fifth and sixth are lines on the quadric and so are 
members of one or other of the two reguli on the quadric. One notes that 
curves of type (2, 0) and (0, 2) are not irreducible since they must decom- 
pose (according to the fundamental theorem of algebra) into two curves of 
type (1,0) and two curves of type (0, 1), respectively. Fortunately, the fact 
that the two quadrics in (3.2) simultaneously have real coefficients imposes 
certain restrictions on the decomposition of /~. Firstly, if a (1,0) curve 
appears in the decomposition, then so must its conjugate (0, 1) curve. 
Hence the twisted cubic is no longer a possibility in the present case 
because this would require an irreducible decomposition into curves of 
type (2, 1) and (0, 1) or curves of type (1,2) and (1,0). For similar reasons, 
an irreducible (1, 1) curve may be a "real" conic,, and so may occur with 
either another real conic or with two lines (generators), or else a complex 
conic, in which case it necessarily occurs with its irreducible conjugate 
conic. One is thus left with four types of irreducible component which are 
labeled by Penrose as follows: 

Q--irreducible (2, 2) quartic curve with real equation; 
C--irreducible (1, 1) conic with real equation; 
B- -pa i r  of complex conjugate irreducible conics each of type (1, 1); 
X- -pa i r  of complex conjugate lines [types (1,0) and (0, 1)]. 

The list of possible decompositions for/~ is thus Q, B, CC, C 2, CX, XX,  
and X 2. The difference between CC and C 2 is that CC represents two 
distinct real conics whereas C 2 represents a repeated real conic. Similar 
comments apply to the cases X X  and X 2. 

The decomposition of the curve/~ is reflected in the decomposition of 
the associated spinor ~As2r- One can in fact decompose ~ABxr generally 
a s  

eOAn xv  = G(A(XHBf ) + G(A(XHB) r) (3.3) 

this being the spinor form of (2.1). In (3.3_) G and_ H are arbitrary 2-spinors 
which are not Hermitian in general and G and H denote the corresponding 
conjugate spinors. In general, (3.3) will correspond to the irreducible 
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quartic case Q for the curve/~. If in (3.3) H can be chosen to be the spinor 
conjugate to G (to within sign) and if G does not decompose into the 
product of two 1-spinors, then one obtains the case B. The case CC occurs 
when G and H may be chosen as nondecomposable, distinct, Hermitian 
spinors (and hence G = G, H=/-~) and the case C 2 when G and H may be 
chosen nondecomposable, Hermitian, and G = _ H. The case CX arises if 
G and H can be selected Hermitian and with H (but not G) decomposing 
as HAx =KA/~ A for some 1-spinor K A. Finally, the case XX occurs when G 
and H can both be chosen to be Hermitian and to decompose as GA, f =JAJyc 
and HAC: =KAKf, where JA and K A are 1-spinors which are not propor- 
tional, the X 2 case occurring when Ja and K a may be chosen to be 
proportional. 

The classification of /z may be further refined along the following 
lines. Firstly one can subdivide the cases Q and C according to the number 
of connected one-dimensional pieces of this curve which lie on the reality 
section ~ ,  this number being employed as a subscript on the correspond- 
ing symbol. This leads to subtypes Q, Q1, and Q2 for curves of type Q and 
subtypes C and C~ for curves of type C, where, following Penrose, the 
subscript zero has been dropped. Secondly one can subdivide the types of 
curve according to their real multiple point structure. The types of multiple 
point which can occur are now listed, together with the symbols used for 
them: 

n-- real  node with two real branches (a double point); 
/--isolated real node with conjugate imaginary branches (a double 

point); 
nn- - two real nodes; 
/ / - - two isolated real nodes; 
c - -cusp  (a double point with one branch and coincident tangents); 
~---tacnode (a double point with two branches, real or imaginary, 

and coincident tangents); 
z~176 curve of tacnodes (a repeated real curve); 

t-- tr iple point with one real and two conjugate imaginary tangents; 
q--quadruple  point with two repeated conjugate imaginary tangents. 

It is a consequence of the quartic nature of # that if it possesses a 
triple point, a quadruple point, or more than one double point then it is 
necessarily reducible (that is, it is not in the class Q). Reducibility will also 
be seen to follow for a curve admitting a tacnode. Conversely if # is 
reducible it necessarily admits multiple points. However, these multiple 
points might not be real and so need not appear in the classification list. 

The existence of a multiple point imposes restrictions on ff.~s.~. In 
fact a point on ~ with associated spinors ~.4 and ~x is a multiple point of/~ 
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if and only if 

(3.4) 

For a real multiple point one has (3.4) holding with ~r -- ~r and ~ ~ R. So a 
complex (real) multiple point corresponds to a complex (real) null Ricci 
eigendirection (cf. the end of Section 1). A real cusp or a real tacnode will 
occur if and only if the two tangents at the realmultiple point are 
coincident. This occurs when (3.4) holds (with ~:~ =~>) and when in the 
equation 

0ABX~(A( B ---- V~X~ (3.5) 

[which is equivalent to (3.4) when ~r = ~ ] ,  21N J= 1 1 0. For a real node 
(real isolated node) it is necessary and sufficient that (3.4) holds with 
g~ = ~  and that in (3.5), 2IN [ < Ipl (2[xl > I~1). A real triple point occurs if 
and only if 

~Bx~A~ B = 0 =  q~an/~,~A~/c, e~ABAr a ~ 0  (3.6) 

Finally, a real quadruple point occurs if and only if 

~ s x ~  a =0  (3.7) 

These results should be compared with the results (i)-(iv) at the end of 
Section 1 and the comments which followed them. 

The possibilities for the real multiple point structure and reducibility 
of/L can now be gathered together by considering each of the possibilities 
for the decomposition of/x mentioned earlier and checking which type of 
real multiple point can occur in each case. Using the multiple point 
symbols as suffices in an obvious notation, one arrives at the following list: 
Q2, QI, Q, Q1 i, Q1 n, Qi, Qlc, Bii, ClClnn, CIC1, B, C1C, CC, Br CIClZ , CIXi , 
CXi, CiXt , XXii, C~z ~176 C 2, X2q. 

Before discussing the connection between the two classifications sum- 
marized in this section and in the last one, it is remarked that Penrose's 
classification has several interesting topological features and also the 
advantage that it enables a diagram of specializations of the above types to 
be drawn up easily (although the resulting diagram is somewhat com- 
plicated). 
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4. T H E  CONNECTION BETWEEN T H E  CLASSIFICATIONS 

The connection between the schemes of Ludwig and Scanlon and of 
Penrose can now be achieved in a straightforward fashion. The details of 
the connection are given in the table. It is remarked that the subclassifica- 
tion according to sign in the Ludwig-Scanlon scheme (indicated by a __+ 
sign in types A and C and by the extra splitting achieved in type B 
according to the sign of Paq a and implicitly contained b u t  not explicitly 
mentioned in type D) is not relevant to achieve the connection considered 
here. A similar distinction of sign was considered by Penrose and can 
easily be incorporated into the table if necessary. 

The details of the table can now be discussed. It is readily shown that 
if a proper real conic intersects the reality section, it does so in a single 
one-dimensional connected region of ~q~. The first three rows of the table 
now follow. Corresponding to the Ludwig-Scanlon class B 1 a or b, one 
easily finds a Penrose curve of type XX.  This necessitates two isolated real 
nodes corresponding to the two real double points, each with conjugate 
imaginary branches, at which the two conjugate line pairs meet. For  the 
Ludwig-Scanlon type B 2 one easily finds a Penrose curve of type CIX. 
Here, one has two possibilities. One occurs when the real multiple point 
defined by the X component of this curve lies on the proper conic C 1 and 
the other occurs when it does not. In the first case one has a real triple 
point with one real and two conjugate imaginary tangents whilst in the 
latter case one has a single real double point with conjugate imaginary 
branches. (The possibility of a further subdivision here according to the 
complex multiple point structure is ruled out owing to the fact that the 
planes in which the line pair X and the conic C l lie are necessarily 
distinct.) The corresponding Ludwig-Scanlon types a r e  B2a and B2b ' c. For 
the Ludwig-Scanlon class B 3 one has a corresponding Penrose curve of 
type C1C r Remembering that the conic C 1 uniquely determines the plane 
in p3(C) in which it lies, it follows that there are only three possibilities, 
namely, when the two conics have none, one, or two common real points. 
In the first case one has the Penrose type CIC ~ and the lack of real multiple 
points shows that the Ludwig-Scanlon type is B3y ,g. In the second case it 
can be shown that the unique real multiple point is a double point with 
two real branches and coincident tangents and so the Penrose type is 
C1CI,r and the corresponding Ludwig-Scanlon type is easily shown to be 
B3d, e. In the third case the two real multiple points are nodes and the 
corresponding types are CiClnn and B3a ' b, c. For  the Ludwig-Scanlon type 
B 4 we have a curve of type C X  and the pair of conjugate lines gives an 
isolated real node so that the type is CXi. This is the only possibility here 
since the planes in which the X and C components lie are distinct. It is 
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easily shown that the types B 5 and CC correspond as do the types B 6 and 
CIC. 

For the Ludwig-Scanlon class C one has a curve of Penrose type B 
corresponding to two conjugate proper conics. Three possibilities can 
occur: when there are no real multiple points (B), when there is one real 
double point (which turns out to be a tacnode and so gives the type B'r), 
and where there are two real double points (with conjugate imaginary 
branches and hence gives the type Bii). The corresponding Ludwig-  
Scanlon types are Cl•  C2_+, and C3+. 

Finally the correspondence between the Ludwig-Scanlon type D and 
the Penrose type Q can be discussed. Here the situation is a little more 
complicated since Ludwig and Scanlon divide their type D according to 
Segr6 type only, whereas Penrose's scheme produced a significant refine- 
ment of this subdivision. Consider first the type D 1 corresponding to Segr6 
type { 1, 1,1, 1 } with all eigenvalues distinct. The canonical form is 

Rab ~-'PlXaXb +D2YaYb +03ZaZb --P4tatb (4.1) 

where (x, y, z, t) constitute a pseudo-orthonormal tetrad (xaxa =yay~ = 
ZaZa = --tata = 1 and all other inner products zero) and where Pl, P2, P3, 04 
are distinct real numbers and satisfy P l + 02 + 03 + 04 =0.  By considering 
the spinor form of (4.1) in terms of the canonical spinor basis a A and flA 
(see Appendix) and by considering solutions of the equation 

epABXr~A~B~X~ f = 0 (4.2) 

where either ~A =/3A or ~A = aA + (X + iy)fl A, X, y ~ R, one finds after some 
calculation that either the curve g fails to intersect the reality section 
(and this occurs if and only if 04 "~Oi, 02, 03) or else it intersects it in two 
distinct one-dimensional connected pieces. Thus type D 1 corresponds to 
the curve types Q and Q2 according to the above eigenvalue inequality, 
there being no real multiple points in this case. In the type-D 2 case one has 
a trace-free Ricci tensor with two nonreal conjugate eigenvalues and all 
eigenvalues distinct (Segr6 type (z, f , l ,  1}). Here a similar calculation 
reveals that g always intersects ~ in a single one-dimensional connected 
piece, and since there are no real multiple points, one has a curve of type 
Q1. In the D 3 case one has a trace-free Ricci tensor of Segr6 type (2, 1, 1}, 
with all eigenvalues distinct, and a canonical form 

Rab =2oil(arab) + ~lalb +~ +03fafb (4.3) 

where (l, m, e, f )  constitute a real null tetrad (lama --eaea =fafa = 1 and all 
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other inner products zero). In (4.3), o l, 0 2, and 0 3 are distinct real numbers, 
k, ER,  and 2o 1 + 0  2 + 0  3 =0.  Also if A > 0 ( < 0 )  then it may be set equal to 1 
( -  1) by a judicious choice of the null tetrad without affecting (4.3). In this 
case one finds that/~ intersects @ in a single one-dimensional connected 
piece if and only if 0 2 <>01 <>0 3 (in which case a single real multiple point 
occurs which is a node and gives type Qln)  and that/~ intersects @ in a 
single one-dimensional connected piece together with a single isolated 
point if and only if GI~>0  and O1<>0"2, O 3 (in which case a single real 
multiple point occurs which is an isolated node and gives type Qli).  
Otherwise/~ intersects ~ in a single point which is an isolated real node 
and gives the type Qi. In type D 4 one has the Segr6 type (3, 1 } with distinct 
eigenvalues and finds that /~ intersects ~ in a single one-dimensional 
connected piece and that a single real multiple point occurs which is a 
cusp, corresponding therefore to type Q~c. 

APPENDIX 

Here, the connections between the various representations of the 
trace-free Ricci tensor can be discussed. Let a A and flA constitute a spinor 
basis with aAfl A ---- 1 and construct a complex null tetrad (l, m, t, t-) accord- 
ing to la <--->a Aff )~ , m a  <---~ - -  f l A f l f ; ,  to ~--~ flAff ~ ( f o ~ a  nflf; ). Thus l~  a = t~  o = 1 
with all other inner products zero. (Recall that the signature is taken to be 
+ 2  and so gob~--~--eAne#//c.) One can construct from this null tetrad the 
usual complex self-dual bivectors, 

Vob = 2[totb]<---~exf, aAo~ B 

(Jab = 2m[atb] ~-~eXyflAflS (A.1) 

M~b = 2l[amb] + 2t[atbl~--~-- 2e/c~.a(AflB) 

Finally one can decompose Rob, /~ob, + Eabcd , and q'.4s;?r in the forms 
below: 

Rob = 2Rll(amb) + R2lalb + R3m omb + 2R4l(axb) + 2RSl(aYb) 

+ 2R6m(oxb)  + 2RVm(aYb) + 2RSx(oyo) + R9XaXb + RlOyoy 6. 

(A.2) 
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where R I, R E . . . . .  R I~ ER,  where 21/2ta =X~ + i y  a [SO that (I, m, x, y )  con- 
stitute a real null tetrad] and where a similar equation holds for Rab with a 
tilde on the corresponding coefficients. 

l~abcd = E1UabUcd -'l-- E2WabVcd .-1-E3MabMcd -'~ E4UabVcd -Jr-E5WabUcd 

"-'l- E6UabMcd "-~-E7MabUcd "~- E8Wabgcd "-~- E9MabVcd ( A . 3 )  

where El, E 2 . . . . .  E 9 E C with El ,  E z, E 3 E R,  E 5 = ff~4, E7 = ff~6, E9 = ff~s. 

~ASXI" = q~ooaa~176 " + 2~olaAasff(Y:flf~) + 2q~ola<afls)aY:af, 

+ 4#h la(a fls)a(Afl;) + qozaaasf l~f f l f ,  + +02fl~fls~xfff~ 

The various coefficients here are connected as follows: 

/~1 1 1 1 9 = ~ R - ~ ( R  +R1~ /~9.~_~R1 I+~R3 9_4..1R10 

/~ lO=_iRl  I_~R~ 9+~..3R10, ~ = R  i (i :~1,9,10) (A.5) 

E1 ~ 3 ,  

2q~0o =E2,  2001 -~ - E s ,  2dPll =E3 

2q~o2 = E  4, 2dP12 = - E 6 ,  2~b22 = E  1 

E2 =/~2, E3 = _/~I, E4 =/~t +/~9 + i/~s 

(A.6) 

E 6 = 2 -  l/2(/~ 6 "1- i/~7), E 8 = - 2 - 1 / Z ( R  4 - i R  5) (A.7) 

/~ab must assume one of the four Segr6 types (1,1,1,1}, (2,1,1}, (3,1),  
and {z, ~, 1, 1} or their degeneracies. The canonical forms for all these 
types have been given (see for example Hall, 1976, 1979) and can be used, 
together with the above connecting formulas, to obtain canonical forms for 
any of the above representations of/~ab" 
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